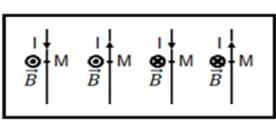

القوى الكهرمغنطيسية _ قانون لبلاص Forces électromagnétiques —loi de LAPLACE


- ◄ نشاط تجريبي 1: الإبراز التجريبي لقوة لبلاص ، العوامل المؤثرة علة قوة لبلاص ، تحديد منحى قوة لبلاص باستعمال القواعد
- نعلق سلكا نحاسيا AB في النقطة A بحيث يمكنه الدوران حول النقطة A ونغمر طرفه الحر B في وعاء يحتوي على محلول مشبع لنترات النحاس المحمض بحمض النتريك . ويمر السلك في تفرجة لمغنطيس على شكل U .
 - نركب على التوالي المولد والسلك والأمبيرمتر ومحلول نترات النحاس وقاطع التيار والمعدلة.
 - استثماد •
 - عند غلق قطاع التيار ، ماذا تلاحظ ؟ ثم ماذا تستنتج ؟
 - 2. لتحديد العوامل المؤثرة على هذه القوة (قوة لبلاص) نقوم بما يلي:
 - ماذا تلاحظ عندما:
 - √ نزید فی شدة التیار الکهربائی I
 - √ نعكس منحى التيار الكهربائي I
 - \overrightarrow{B} نعكس منحى متجهة المجال المغنطيسي \checkmark
 - ك نضاعف $oldsymbol{L}$ طول جزء الساق المغمور في المجال المغطيسي بوضع مغطيسين على شكل $oldsymbol{U}$ متماثلين أحدهما على الأخر
 - 3. حدد مميزات قوة لبلاص
 - 4. يمكن تحديد منحى قوة لبلاص \vec{F} بالقواعد التالية :
 - $rac{1}{2}$ قاعدة ملاحظ أمبير : نعتبر ملاحظ أمبير ممتدا في إتجاه الساق بحيث يجتازه التيار الكهرباني من الرجلين الى الرأس وهو ينظر في إتجاه ومنحى \overline{B} فإن يده اليسرى تشير الى منحى قوة لبلاص \overline{F}
 - 🚣 قاعدة اليد اليمنى : تتجه اليد اليمنى وفق منحى التيار, حيث يخرج من أطراف الأصابع, وتتجه راحة اليد نحو المتجهة \overline{B} . تشير الإبهام إلى منحى \overline{f} بعد إبعادها عن الأصابع الأخرى
 - قاعدة الأصابع الثلاث لليد اليمنى : عندما تشير السبابة إلى منحى \hat{I} والوسطى إلى منحى \hat{B} فإن الإبهام تشير إلى منحى \hat{F} وذلك بعد تكوين زاوية قائمة بين الإبهام والمستوى المكون من السبابة والوسطى
 - باستعمال هذه القواعد حدد منحى متجهة قوة لبلاص \overrightarrow{F} في النقطة f M في الحالات الممثلة في الشكل جانبه، ومثلها بدون إعتبار السلم

القوى الكهرمغنطيسية _ قانون لبلاص Forces électromagnétiques –loi de LAPLACE

- ◄ نشاط تجريبي 1: الإبراز التجريبي لقوة لبلاص ، العوامل المؤثرة علة قوة لبلاص ، تحديد منحي قوة لبلاص باستعمال القواعد
- نعلق سلكا نحاسيا AB في النقطة A بحيث يمكنه الدوران حول النقطة A ونغمر طرفه الحر B في وعاء يحتوي على محلول مشبع لنترات النحاس المحمض بحمض النتريك.
 ويمر السلك في تفرجة لمغنطيس على شكل U.
 - نركب على التوالي المولد والسلك والأمبيرمتر ومحلول نترات النحاس وقاطع التيار والمعدلة.
 - إستثمار:
 - 1. عند غلق قطاع التيار ، ماذا تلاحظ ؟ ثم ماذا تستنتج ؟
 - . لتحديد العوامل المؤثرة على هذه القوة (قوة لبلاص) نقوم بما يلي:
 - ماذا تلاحظ عندما:
 - √ نزید فی شدة التیار الکهربائی I
 - ✓ نعكس منحى التيار الكهربائي I
 - \overrightarrow{B} نعكس منحى متجهة المجال المغنطيسي \checkmark
 - الأخر $oldsymbol{U}$ نضاعف $oldsymbol{L}$ طول جزء الساق المغمور في المجال المغنطيسي بوضع مغنطيسين على شكل $oldsymbol{U}$ متماثلين أحدهما على الأخر
 - 3. حدد مميزات قوة لبلاص
 - 4. يمكن تحديد منحى قوة لبلاص \vec{F} بالقواعد التالية:
- قاعدة ملاحظ أمبير: نعتبر ملاحظ أمبير ممتدا في إتجاه الساق بحيث يجتازه التيار الكهربائي من الرجلين الى الرأس وهو ينظر في إتجاه ومنحى \vec{B} فإن يده اليسرى تشير الى منحى قوة لبلاص \vec{F}
 - 🕹 قاعدة اليد اليمنى : تتجه اليد اليمنى وفق منحى التيار, حيث يخرج من أطراف الأصابع, وتتجه راحة اليد نحو المتجهة \overrightarrow{B} . تشير الإبهام إلى منحى \overrightarrow{F} بعد إبعادها عن الأصابع الأخرى
 - lacktriangleright قاعدة الأصابع الثلاث لليد اليمنى : عندما تشير السبابة إلى منحى $ar{I}$ والوسطى إلى منحى $ar{G}$ فإن الإبهام تشير إلى منحى $ar{F}$ وذلك بعد تكوين زاوية قائمة بين الإبهام والمستوى المكون من السبابة والوسطى
 - باستعمال هذه القواعد حدد منحى متجهة قوة لبلاص \overrightarrow{F} في النقطة f M في الحالات الممثلة في الشكل جانبه، ومثلها بدون إعتبار السلم

